
Operating System Nouhad J. Rizk 1
1

Lab 4

Shell Scripts

Operating System Nouhad J. Rizk 2
2

Introduction to Shell Scripts

• On the most basic level, a shell script is simply an ordinary text
file that contains a set of shell commands. You can use vi to
create a basic shell script:
$ vi cmd_test (use vi to add the following lines)

pwd

date

echo hello world

• Although we will learn several ways to execute shell scripts, the
most basic way to execute it is with the ksh command as below:
$ ksh cmd_test

/u/ds59478/stuff

Sun Jan 2 04:00:55 EST 2000

hello world

• Essentially what we have created is a custom new UNIX
command that executes three other commands. Although this
example is not a particularly useful command, it provides the
basis for shell scripts.

Operating System Nouhad J. Rizk 3
3

Executable Shell Scripts
• On the previous page, we created a shell script called cmd_test that is a

custom UNIX command. Like other UNIX commands, we should be
able to execute it without the ksh command:
$ cmd_test

ksh: cmd_test: 0403-006 Execute permission denied.

$

• However, by default, ordinary files are not created with the execute
permission bit turned on:
$ ls -l cmd_test

-rw-r--r-- 1 ds59478 dasd 26 Jan 2 04:00 cmd_test

$

• To make the cmd_test file executable, use the chmod command:
$ chmod +x cmd_test

$ ls -l cmd_test

-rwxr-xr-x 1 ds59478 dasd 26 Jan 2 04:00 cmd_test

$ cmd_test

/u/ds59478/stuff

Sun Jan 2 05:40:43 EST 2000

hello world

$

• Shell scripts that are to be used again should have the permissions set to
executable, and should be moved to the ~/bin directory.

Operating System Nouhad J. Rizk 4
4

Shell Script Variables
• To demonstrate the use of variables in shell scripts, we shall

modify the contents of our test script:

$ vi cmd_test (use vi to change file to lines below)

pwd

date

x='hello world'

echo $x

• In this script, we assign the value of hello world to a variable
called x. In the syntax of shell scripting, the equal sign (=)
represents assignment and the string is represented by the single
quotes (‘’). The echo command uses the ($) to represent the
value of a variable as its string. Below is the result:

$ cmd_test

/u/ds59478/stuff

Sun Jan 2 06:00:48 EST 2000

hello world

$

• In this script, the $x was replaced with the hello world string.

Operating System Nouhad J. Rizk 5
5

Shell Processes
• Now, notice what happens when we look at the $x variable:

$ echo $x

$

• The script on the previous slide set the value of $x to hello world, but it
is now empty. To see why, add the following statement (by using vi) to
the cmd_test script:

echo $$

• The $$ parameter of echo displays the process id number:

$ cmd_test

/u/ds59478/stuff

Sun Jan 2 06:13:57 EST 2000

hello world

294170

$ echo $$

337662

$

• Notice that the process id numbers are different. This is because the
command executes its own process called a child process. This is
different from the original process which is called the parent process.

Operating System Nouhad J. Rizk 6
6

Sourcing Shell Processes
• In general, UNIX commands create their own child processes

for the life of the command. We see this when we execute the
cmd_test script via ksh or directly. However, there is a way to
execute the command in our current shell process. This is done
by using the source (.) command as follows:
$. cmd_test

/u/ds59478/stuff

Sun Jan 2 06:25:25 EST 2000

hello world

337662

$ echo $x

hello world

$ echo $$

337662

$

• As you can see the process ids are the same for the cmd_test as
they are for the shell session. Also, the shell now has the $x
variable set to hello world. This is known as “sourcing” a
command.

Operating System Nouhad J. Rizk 7
7

More Shell Processes – ps command

• In general, at any given time, UNIX systems have many
processes running on them at once (multi-user, multi-threaded).
To view all of these processes, we can use the ps command
with the –ef flag:
$ ps –ef

• To view your processes in this format, you can pipe the output
of the ps command to a grep for your id:
$ ps -ef | grep ds59478

ds59478 102222 337662 0 06:41:56 pts/2 0:00 grep ds59478

ds59478 140262 337662 24 06:41:56 pts/2 0:00 ps -ef

ds59478 337662 379778 0 05:33:50 pts/2 0:00 -ksh

$

• At the time this command was running, I had only my native
(or parent) shell process going. The other two entries are for
the ps and grep commands themselves.

• There are many commands that revolve around the
management of processes that are outside the scope of this
course. However, learning the ps command and using echo $$
provide an introductory look at processes.

Operating System Nouhad J. Rizk 8
8

Shell Environment Variables – set command

• In previous labs, we have seen a special file called ~/.profile
which contains user defined defaults for the shell environment.
There are actually several different files that serve to customize
the user environment. We covered the ~/.profile because it is a
common convention used in all UNIX.

• Specifically on AIX systems, there are several files such as
/etc/environment, /etc/passwd, /etc/groups and /etc/profile that
help define the default user environment. Generally, users can
not edit these files without the help of a system administrator.
However, these files contain the default definitions of several
environment variables.

• The set command displays all of the variables that are defined
to the shell. When you first log into a system, this includes all
of the environment variables that get initialized. If you define a
new variable to the shell, then it also can be displayed by using
the set command. Below is an example:
$ x=matt

$ set | grep x

x=matt

$

Operating System Nouhad J. Rizk 9
9

Shell Environment Variables – PATH

• One of the most basic and common uses of shell programming
is creating and/or modifying the shell environment variables via
the ~/.profile file. For example, all variables set in the
/etc/profile file can be overridden by changing them in the
~/.profile of the user.

• An example of this is the PATH variable. This variable
determines the directory paths that the shell will search when
attempting to execute a command. The following command
allows you to view your PATH variable:
$ echo $PATH

• Binary executable programs are normally stored in a bin
directory. When users write a script that will be used again,
they will often move the script to the ~/bin directory. If it is a
program that could be used by other users, then it can be moved
to a shared bin directory such as /usr/bin.

• In the example below, we create a new script in the ~/bin
directory and source it. The system knows where to find the
script because of the PATH variable:
$ echo ‘clear;ls –al’ > ~/bin/clr

$. clr

Operating System Nouhad J. Rizk 10
10

Shell Environment Variables – PS1 and export

• Another shell variable is PS1, which controls the shell prompt.
Some users (especially those coming from a DOS background)
would like to see the current directory as part of the shell
prompt. This is done with the PS1 variable as below:
PS1=‘$PWD $ ’

• As we learned before, shell variables only exist for the current
(or parent) shell process. If subsequent (or child) processes are
started, then the shell variables need to be re-assigned.
However, this can be avoided with the export command:
export PATH PS1

• The export command passes the shell variables to the child
process so that the shell variables do not need to be reassigned.
This process is aptly called inheritance, because parent shells
pass on their values to the child shells.

• At this point, we can see that the ~/.profile is not just a special
file, but a working shell script that assigns variables, passes
parameters and executes UNIX commands.

Operating System Nouhad J. Rizk 11
11

Interpreted Programming Languages – sed, awk and perl

• As mentioned earlier, the UNIX programming environment
supports interpreted programming language scripts. Three very
popular languages in the UNIX environment are sed, awk and
perl. Below is a brief explanation of each:

– sed – stands for stream editor. It is mostly used for repetitive
changes in text patterns as a “find and replace”. It can be issued
interactively from the vi editor or via the command line.

– awk – named for its authors Aho, Weinberg and Kernighan of Bell
Labs. Specializes in formatting text from multiple input sources.
Serves as a great tool for report generation. Very similar to C
language in structure (developed by the same people).

– perl – stands for practical extraction and reporting language,
developed by Larry Wall. Full blown programming language that
combines the features and functions of C, sed, awk and shell
programming. There are many different ways to perform the same
function using perl. Available on multiple platforms as public
domain software.

• There are entire books and courses dedicated to each one these
languages. However, as an introduction, in this class we will
write a very simple script in each language.

Operating System Nouhad J. Rizk 12
12

An example of sed – text substitution

• People most commonly use sed for global substitutions in text
files. Below is a simple example:
$ cat syllabus

This file contains the spring syllabus for MGT6346

which will be taught in the spring semester.

This spring, I will spring into action as

I teach this class in the spring.

$ sed s/spring/summer/ syllabus > summer_syllabus

$ cat summer_syllabus

This file contains the summer syllabus for MGT6346

which will be taught in the summer semester.

This summer, I will spring into action as

I teach this class in the summer.

$

• Notice that only one occurrence of “spring” was substituted on
each line. To substitute all occurrences, specify the letter g in
the criteria for a global substitution:
$ sed s/spring/summer/g syllabus > summer_syllabus

Operating System Nouhad J. Rizk 13
13

An example of awk – formatting the output of ls

• In the UNIX environment, awk (using the –f option) is often
used to take the output from a command and format it:
$ cat awk_ls

BEGIN {print "Bytes" "\t" "Filename"} (sets up header)

{sum += $5;print $5 "\t" $9} (Loops through input)

END {print "Total Bytes are "sum} (sets up footer)

$ ls -l | awk -f awk_ls

Bytes Filename

101 awk_ls

172 summer_syllabus

172 syllabus

15 test

Total Bytes are 460

$

• Although awk is still commonly used, awk programs that
interact with UNIX commands are generally being replaced by
the more robust perl language. The availability of awk to perl
conversion utilities has helped to facilitate this migration.

Operating System Nouhad J. Rizk 14
14

An example of perl –interactively listing home directory files

• An example of how perl can interact with commands (as we
have seen with awk) and with UNIX commands (as we have
seen with shell scripting) can be seen in the program below:
$ cat perl_dir

#!/usr/bin/perl

print "Enter the username of the home directory you
would like to view: ";

chop($hdir = <STDIN>);

chdir(~$hdir) || die "Invalid username"

foreach(<*>) {

print "$_\n";

}

$

• A topic within the world of perl that is outside the scope of this
course (but worth mentioning) is the use of macros. One of the
things that makes perl so powerful is that perl macros can be
written on one platform and ported to others. The use of perl
macros is one of the reasons that it is becoming a popular
scripting language for web-based applications.

	Lab 4Shell Scripts
	Introduction to Shell Scripts
	Executable Shell Scripts
	Shell Script Variables
	Shell Processes
	Sourcing Shell Processes
	More Shell Processes – ps command
	Shell Environment Variables – set command
	Shell Environment Variables – PATH
	Shell Environment Variables – PS1 and export
	Interpreted Programming Languages – sed, awk and perl
	An example of sed – text substitution
	An example of awk – formatting the output of ls
	An example of perl –interactively listing home directory files

